If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2+10v-20=0
a = 5; b = 10; c = -20;
Δ = b2-4ac
Δ = 102-4·5·(-20)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{5}}{2*5}=\frac{-10-10\sqrt{5}}{10} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{5}}{2*5}=\frac{-10+10\sqrt{5}}{10} $
| 4(x-2=17 | | a-5+3a+7=180 | | F(x)=0.5(4)^x-2 | | 4a+2=90 | | 4a+2=180 | | 2q^2+9=205 | | n^2-4/2=16 | | 11-3r^2=-49 | | -2e-5=7 | | 3x-4=5/4+3 | | 12^3n=63^5n-3 | | 450=10(t-938) | | 37+6g=457 | | 5p-97=178 | | 41=5+4w | | Y=-200+5x | | 1500=250+5.30x | | 9+3u=75 | | 31=13+9b | | 3x+4x+5=90 | | 11=77-f | | 85-m=26 | | 91=8k+27 | | 24=99-r | | 5^4x=25^x-2 | | 41-h=20 | | 28=90-t | | Y=37/13x-23 | | 12x+4=9x-21 | | 5x-10=11x+1 | | k+1/8=11.1/4 | | 3y/2=10 |